自动驾驶课题研究背景(自动驾驶技术论文参考文献)

自动驾驶 587
今天给各位分享自动驾驶课题研究背景的知识,其中也会对自动驾驶技术论文参考文献进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!本文目录一览: 1、高级自动驾驶在特定场景实现商业化,安全问题能得到解决吗?

今天给各位分享自动驾驶课题研究背景的知识,其中也会对自动驾驶技术论文参考文献进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

高级自动驾驶在特定场景实现商业化,安全问题能得到解决吗?

高级自动驾驶在特定场景实现商业化,安全问题能得到解决吗?

汽车自动化发展趋势已不可避免,怎样把无人驾驶前沿科技开展商业化的落地式,一直是业界广泛关注的话题。在福瑞泰克CTO 沈骏强来看,只有把无人驾驶技术投入到了商业化的运用才算是真正的成功。是一个真正意义上的商业化的运用并非检测品;商业化的落地的车子是必须从生产线,流水线上下来的,而非手工制作改装的;要达到一定的量,而非仅仅一辆或二辆那样车辆。

雷锋网新智驾了解到了,福瑞泰克目前正在做高端辅助安全驾驶系统ADAS的批量生产落地式,2021将逐渐发布批量生产商品。与此同时,该公司还提供一些新产品的文化整合开发工程服务项目。对于怎样从在实践中进一步完成商业化的落地式?近日,沈骏强从安全性、客户体验、应用领域和成本四个方面作出了讨论。以下属于沈骏强演说的全部内容,雷锋网新智驾作出了没有改变本意的编写:

安全系数健康是无人驾驶技术一个主要总体目标。大家都知道,车子其实有很多不安全的的情况发生,包含车辆碰撞、跟行人的撞击,车辆抛锚、迷了路具体也是一种不安全的主要表现。针对这些不安全隐患,目前有保护车内乘客、车辆和路人等手段,车里还配置了汽车安全气囊、AEB系统自动应急辅助刹车等系统。

实际上,汽车的安全生产技术发展到现在,这种方法对无人驾驶而言还是不够的。无人驾驶技术的安全性目标就是要防止这种不安全的的情况发生。确保无人驾驶技术的安全性?许多的业内人在研究这一块的一些课题研究,业内也有一些同盟构成了一些规范,例如国家标准ISO 26262,它界定了ADAS系统软件在系统无效时候的一个安全需求。包含部件的无效要求、监视系统、诊断和多余,安全和非安全应用的防护,及其设定安全边界这些。

在界定安全计划时,ISO26262规范里边有三个分辨要素,包含严重程度、发生概率和产生无效时汽车的可操控性。对自动驾驶车辆而言,系统软件无效仅仅失效模式的一种,在无人驾驶技术中,系统软件自身性能优劣都是安全需求的一部分。因此,大家在讲无人驾驶技术安全性的情况下,要一起考虑到功能安全和行为安全。

智能驾驶「人才荒」,困在了高校的学科博弈中

75岁的曹德旺这几年在计划一件事——出资100亿元,设立一所新大学。

他主动向福建省委省政府提出办学这事,领导们都很支持,也召开了好几次会议,就专门讨论怎么办学的事情。

曹德旺是福耀玻璃的董事长,他深刻感受着目前中国制造业人才困境的切肤之痛。

制造业企业高级管理人才断档、培养制造业人才的学科与产业需求脱节、德国教育模式的启发......都是促使曹德旺下决心一定要办好这所大学的原因。

在他看来,当下国内大学培养人才的模式偏标准化,且存在重虚拟经济、轻实体经济的倾向,同时一些培养制造业人才的学科跟不上市场需求和产业发展要求,制造业真正需要的高端人才没有地方培养。

就像一个缩影,自动驾驶赛道也处于类似境地。

作为 汽车 产业转型的核心要素之一,自动驾驶创业热潮起起伏伏已持续多年,全球众多车企、 科技 公司和初创公司都在下场追捧,饥渴的投资者们就像嗅到血腥味的鲨鱼,攘往熙来。

然而,这个行业一直以来都面临着如何招到合适人才的老大难问题。

一个典型的场景是,当企业终于找到合适的算法工程师时,却发现这位候选人手里拿着七八张offer,一家比一家工资高。

缺口最大的算法类岗位,更是浮躁到了令人害怕的程度,“你出钱高,我就会比你出得更高。候选人也是,今年要30万,明年要60万,后年就会要90万、120万”。为了留住合适的候选人,猎头们想尽了招数,甚至接起了“代管宠物”的业务。

现状也令不少企业感到头疼,美团就是其中之一。据一位接近美团高层的人士表示, 因国内自动驾驶人才性价比堪忧,美团或将在硅谷设立自动驾驶研究中心,以相对更低的成本在美国招揽自动驾驶研发人才 。

如果仔细观察供需情况会发现, 自动驾驶“人才荒”是结构性的,是“质”与“量”的双重缺位 。

一方面,当下自动驾驶行业热闹依旧,不断有圈内高管离职创业、大厂跨界押宝、车企重金转型,研发岗位缺口随之扩大。

据预测,到2025年, 汽车 行业对智能网联 汽车 人才的需求量将达到10.3万人,其中又以智能驾驶领域的人才缺口最大,预计将达到5万人。

另一方面,目前业界所需的很多新增岗位此前鲜少有传统车企涉猎,而各大高校对自动驾驶人才的培养又有些滞后。

以一般的自动驾驶感知算法架构师为例,该岗位除了要求候选人熟悉自动驾驶常见系统架构,还要求熟悉深度学习等主流感知技术,同时有参与过车规功能上车量产工作的优先。

自动驾驶行业猎头熊颖仪告诉新智驾,通常的一个自动驾驶L4级的创业公司,团队规模在300-500人,其中研发占70-80%。

“就算法岗而言,大多数公司缺的都是‘具有全栈能力的算法工程师’。会训模型的算法工程师很多,会软件开发的也很多,但是熟练使用C++编程的算法工程师并不多。”

也就是说,从事这类工作的人才,既要有软件开发技能、掌握多种程序设计语言,也要有对 汽车 新旧硬件的充分理解, 其胜任难度和要求均远超从前 。

在智能驾驶行业发展初期,这类人才多只能从公司内部转岗或者跨行业 社会 招聘而来。

但随着行业发展越来越成熟,社招将多集中在行业内的成熟人才,这类成熟人才换工作不影响智能网联 汽车 既有的人才存量,因此未来的智能网联 汽车 的新增人才可能将主要来自于校招。

而这又涉及到另一个问题——校招人才从何而来。

据了解, 高校为自动驾驶行业培养人才方面,助力不多 。

清华大学计算机系教授、人工智能专家邓志东告诉新智驾,目前国内高校主要是通过参加自动驾驶相关科研项目来培养自动驾驶人才,以硕、博研究生为主,本科生、博士后相对较少。

他认为,当下的自动驾驶人才大多来自于计算机系、自动化系、电子系、车辆工程等学科专业,这种人才培养模式无法满足 社会 上普遍存在的自动驾驶用人荒,也不能取得最佳的人才培养效果。

“有必要设立独立的自动驾驶专业,因为培养自动驾驶人才所需的教学大纲、课程体系、师资、教学实习实验设备、产业环境等都与现有专业不同,需要重新组织才能满足专业建设的要求。”

自动驾驶专家、武汉理工大学副教授杨胜兵对新智驾直言, 那种旧瓶装新酒、只是改变了专业名称的换门头做法,三、五年后就被市场判断出来了,到时候就是害人害己害 社会 。

这不是杨胜兵的一家之言。

邓志东也同样希望自动驾驶能成为高校中的一门新学科,特别是创设为一门本科专业或成为一级学科。 如果可以,最好就隶属于自动驾驶学院,“因为将其归属于人工智能学院、计算机学院或车辆工程学院,都不完整” 。

事实上,究竟是设立自动驾驶研究中心、实验室,还是单独设立“自动驾驶学院”,这会给高校在重视与投入程度、学科课程体系的构建、师资配备、教材建设和生源等方面,带来很大的不同。

自动驾驶技术的研发主要起源于移动机器人技术的研究与拓展,因此国内外移动机器人的研发强校,同时也是自动驾驶研发与人才培养的策源地。

除了计算机、自动化,自动驾驶技术也与车辆工程等学科专业高度相关。

而作为前沿新兴技术,自动驾驶迄今未有本科专业与一级学科,所以近期高校设立的自动驾驶班或无人驾驶研究中心,大多挂在不同的学院下,研究的方向和重点也有所不同。

同时目前机械类、电子信息类、自动化类等各专业都有面向智能驾驶领域开设相关课程, 类别繁芜,又容易造成资源重复和浪费,一个高校内重复设立两门相似的专业或课程的情况并不少见 。

比如姚丹亚是清华大学自动化系的教授,他在做课程设计时,曾面向全校研究生开过一门课叫《智能交通概论》,巧合的是,同时期清华大学交通工程专业也开设了这一课程。

最开始也有不少土木、计算机等专业的学生选修姚丹亚的这门课。

但姚丹亚发现,诸如交通工程专业的学生选修他的《智能交通概论》,是希望补足控制、编程方面的知识,但这类知识自动化系的学生其实早有学习,因此他这门课的教学重点是在交通、 汽车 领域,而这方面,交通工程专业的学生又已掌握了不少。

“很难满足不同学生的需求,”姚丹亚指出。

“任何一个学院和学科,都不能满足无人车这种跨学科领域研究项目的人才需求,” 北京联合大学副校长、智能车国家重大计划项目负责人鲍泓也曾在接受媒体采访时表示,光由自动化学院研究机器人只能侧重自动控制,机电学院只会研究机器人关节和机械装置,而这些都只是智能车研究中很小的一部分。

因此, 在智能驾驶人才培养方面,将各相关专业融合教学成了趋势之一 。

在这方面,国内早有高校尝试,只是并不以“自动驾驶学院”的名目单独创立。

比如在2016年,北京联合大学就在全国成立了首个机器人学院,由院士李德毅担任院长,而无人车属于轮式机器人,成为专业的重点研究方向。

但如果现在要想将自动驾驶设立为一门独立的本科专业,抑或设为一级学科,其实都面临着师资、课程培训体系搭建、产业环境需求等一系列问题。

深蓝学院的教研负责人赵松就对新智驾表示,自动驾驶作为一个综合性的学科, 高校目前并没有足够的师资来支撑自动驾驶成为一门独立的专业 。

“比如现在有不少学校都设立了AI专业,但结果还是因为缺乏师资,形成不了系统化的培养体系。”

赵松认为,自动驾驶更偏工程化,高校师资如果没有在这个行业的工作精力,培养出来的学生依然满足不了企业需求。

除此之外,开设一门新独立学科或一级学科,通常需要国家层面的教育主管部门进行顶层设计,其前提是必须从“四个面向”的高度说明,中国大规模自动驾驶人才的培养不仅意义重大深远,而且行业对人才有着持续性的市场需求,这使得实际操作起来环节很多,过程十分复杂。

不过为了培养复合型人才,在2021年初,教育部新增了国内的第14个学科门类——交叉学科,下设“集成电路科学与工程”、“国家安全学”一级学科,经过申请备案,也有不少高校被允许自设二级学科和交叉学科。

随之而来的问题则是,“ 自动驾驶”学科究竟该隶属什么学院,由谁来主导成立 。

在《无人驾驶 汽车 概论》一书中,北京理工大学的陈慧岩等教授提出了一个重要概念,即智能 汽车 的一体化设计。

陈慧岩等人认为,作为先进 科技 集成,智能 汽车 同样要面对传统 汽车 的美学造型设计、整车结构设计问题,产品既要美观、实用,还要能满足商业化成本控制需求。因此,从内部软硬件控制系统到外部车身设计,都需要进行一体化考虑。

在邓志东看来,未来的自动驾驶车辆正向设计,虽然仍离不了信息化 汽车 平台的支撑,但由计算机专业的思维来主导,或更有利于自动驾驶技术与产业的发展。

目前对自动辅助驾驶和自动驾驶的研发,大多是利用新能源 汽车 或电动 汽车 全线控平台进行构建,同时传统燃油车与电动 汽车 均有高度市场化的产业支撑。

因此相对来说,环境感知、自主定位定姿、行为预测、决策、规划与控制,则是自动驾驶落地应用与大规模商业化进程中必须着力突破的焦点和难点。

邓志东从这个角度来分析, 认为人工智能与计算机视觉才是自动驾驶人才培养体系的核心和重点,应该也必须主要由它们来主导自动驾驶的教学体系设计与人才培养。

元戎启行副总裁刘轩则认为,和自动驾驶最接近的专业,应该是机器人专业,所以应该以设计机器人的思路去主导设计无人车,“目前国际上做得比较好的公司里的CTO或创始人们,基本都是机器人相关背景出身的”。

而考虑到由此产生的各个学院的话语权争夺问题,姚丹亚则直接否定,称 “(设立独立的自动驾驶学科)这事搞不成” 。

除此之外,刘轩还表示,除非高校的课程能与业界保持与时俱进,否则专门开设一门自动驾驶学科的课程设置难度会非常大。

一方面,自动驾驶技术的迭代需要海量数据,而高校只能用有限的开源数据,因此相比于业界,高校在理解自动驾驶技术方面就困难得多。

另一方面,业内也有很多前沿的技术并未公开披露或者发表为论文,知识产权掌握在私企中,企业愿不愿意拿出来分享、谁来教课,也是一个很大的问题。

事实上,从专业教学大纲、课程体系、师资、设备等方面搭建一门完整的独立学科,往往需要至少5-10年的周期。

远水难解近渴。

因此在目前企业内部的人才培养模式上,其实不少企业已经“被逼着”先形成了 “专项培训”、“老带新”,以及“在岗学习”三位一体的组合,效果初现。

刘轩告诉新智驾,对于计算机专业以及对自动驾驶涉猎不深的应届生,通过“老带新”和“以战代练”的方式,基本上入职半年就可以做出不错的项目成果。

因此在他看来,在校期间,这些学生专门去学自动驾驶课程的必要性不大,因为业内自动驾驶技术迭代非常快,“在学校学的,毕业后可能就用不上了,校内学生最好还是培养基础能力,比如机器学习算法、写代码能力、软件工程能力”。

L4级自动驾驶公司酷哇的HDR张树丽则表示,与其设立单独的自动驾驶学科,高校更应该多增加和企业的合作,培养学生的实践落地能力,“以战代练,是培养人的很好方式,酷哇比较崇尚”。

国内高校对无人车的研究其实很早。

和很多前沿技术一样,国内开始对无人驾驶车辆的研究也是起于军事需求。

“八五”期间,南京理工大学、清华大学等高校承担了一项名为“地面军用机器人“的项目,联合研制出了国内第一辆具有自主识别功能的ATB一1无人驾驶车辆。

随后,国内高校开始零星以课题组的形式对无人驾驶技术进行研究, 目前国内“科班”出身的自动驾驶人才,也大多由这些研究型大学产出 。

比如中国工程院院士郑南宁在2001年末,就在西安交大组建了无人驾驶智能 汽车 课题组。

2002年,课题组的无人驾驶车“思源1号”正式诞生,2005年,课题组则开始试图让“思源1号”进行一次从西安到敦煌的长途无人驾驶之旅。

当时“思源1号”的长途之旅走得磕磕绊绊,大多数时候仍依赖人工驾驶,而彼时国内研究无人车领域的人确实是少之又少,只能说是初步在土壤中埋下了种子,远远谈不上自动驾驶人才培养体系。

真正让各高校刮起自动驾驶人才培养旋风的,是国内从2009年开始创办的中国智能车未来挑战赛。(雷峰网已策划了中国智能车未来挑战赛人物报道,点击链接阅读第一篇:《崔迪潇:无人驾驶、摇滚和半个西安人》)

2009年,第一届中国智能车未来挑战赛在西安举行,当时的测试场景相对比较简单,比如要求对交通信号、标志和标线进行识别等。

随着时间的推移,中国智能车未来挑战赛开始引入更真实更复杂的场景,逐渐让车辆在真实的乡村和城区道路上行驶,并且陆续增加雾天、信号屏蔽区等测试环境,从感知到规划决策再到控制,对参赛无人驾驶车辆的自主行驶能力要求不断提高。

举办十多年来,各大高校持续参赛,让一批参赛学生对自动驾驶萌生兴趣并走向业界成为中坚力量。

邓志东曾在2016年作为领队,带领清华大学的无人车“睿龙号”参加当时的智能车挑战赛。

他告诉新智驾,参加了智能车挑战赛的学生们,一般是去往百度、阿里、腾讯等巨头公司的比较多,主要从事自动驾驶高级技术岗,薪资水平相当可观,也有少数学生创业,部分初创企业已成长为中国自动驾驶细分赛道的头部企业。

邓志东认为, 与仅是以论文发表或是以PPT成果汇报为目的的科研不同,“以赛促研”的模式不仅能真刀真枪地解决问题,而且相应的技术研发也更加落地,因此培养的人才也更能满足企业的实际需要 。

元戎启行副总裁刘轩也表示,参加类似的智能车挑战赛能够让学生对行业有个基本的概念、产生兴趣,吸引人才进入这个行业。

也正是在2009年前后,国内高校对培养智能驾驶人才的动作频繁起来。

像2009年第一届中国智能车未来挑战赛的冠军湖南大学,就在参赛前夕的2008年7月,由来自计算机通信学院、机械工程与运载学院等学院的50多人,组成了无人驾驶车辆预研项目组。

清华大学的 汽车 安全与节能国家重点实验室,则是在2011年,开始将研究方向转向智能网联 汽车 与自动驾驶。

除此之外,还有各类名目不一的机器人实验中心、国内外高校、企业联合成立的无人驾驶研究中心、创新中心,都在这期间如雨后春笋般出现。

同时,近几年,随着发展智能网联产业上升到国家战略高度,高校、职业院校们也开始增设相关专业或者学院,比如清华大学的车辆与运载学院、北航交通学院的自动驾驶班、合肥工业大学的智能车辆工程专业等等。

不过,目前高校对智能驾驶人才的培养, 却是起个大早却赶了晚集,时至今日不管是“质”还是“量”都仍不能满足业界当下的需求 。

以中国智能车未来挑战赛为例,尽管它确实为方兴未艾的智能驾驶行业积累了技术和培养了人才,但随着越来越多的公司进行自动驾驶技术的商业化落地,对他们而言,候选人的参赛经验,在面试时,这时只能算是锦上添花的加分项。

企业也开始更谨慎地通过类似的赛事去考察对方的能力。

同时,自动驾驶技术步入落地阶段,曾经众多参赛选手自立门户一举创业的景象也已渐渐远去。

清华大学自动化系统工程研究所教授姚丹亚就认为,各种 汽车 挑战赛,多是起到激发学生兴趣的作用,“但对学生从事这个职业有多大作用,不太确定”。

再看当下各类的高校无人驾驶实验室或者研究中心,除了规模小无法满足行业需求外,也另有局限。

姚丹亚表示,高校实验室或者和企业合作的实验室目的各不同:

赵爽今年刚硕士毕业,进入了一家新能源 汽车 公司任ADAS算法工程师。

在他看来,由于论文导向,高校里的同学大多是在做推公式、调参的活儿,和企业做真实项目的需求脱节。

“企业做项目需要把所有的缺点都克服,不一定要用最好的设备,关键是要可靠和效率高,但发论文只需要抓住N次实验中的最好数据,为了论文的创新点,也会使用一些高端昂贵的设备。”

确实,在自动驾驶的研发过程中,企业更加注重于短期的落地实践与商业化应用,而高校则擅长较长远的前沿与关键核心技术的攻克。

邓志东认为,培养与产出高级自动驾驶人才是高校的主要使命之一,这可为合作企业所用。

因此,企业和高校之间,非常有必要合作成立自动驾驶实验室或者研究中心。

然而目前真正成功的合作案例不多。

究其原因,一方面是两者的评价体系与机制迥异,二是双方的特长不同,合作中需要扬长避短。

例如,由于高校研发团队通常很小,学生管理较自由,执行力与效率不如企业,因此企业并不适合以时间硬节点的形式要求高校完成一些工程性很强的开发任务。

另外考虑到核心技术的突破具有一定的失败风险,因此校企合作中也要有一定的宽容度。

而当下新增的专业比如智能车辆工程等,其实也存在着供需错配的问题。

像近年专面向智能网联 汽车 技术而全新开设的智能车辆工程专业,其课程体系仍然以机械类课程为主,对智能网联 汽车 技术的总体匹配程度相对不高。

此类专业对学生的培养方向,与其说是智能化,不如说更多是电动化,学生也多在 汽车 及零配件、机械/设备/重工、交通/运输/物流等领域就业。

而除了设立独立的自动驾驶学科这一选项,在培养产业应用型人才方面,研究型大学、应用型大学和技能型大学等不同种类院校能做的事其实并不少,比如参考德国的二元制教育、借鉴硅谷的“创业孵化器”“产学研培养”等模式, 探索 空间极大。

当然,现阶段为行业培养人才的事,应该仍靠校外做主力。

但在参加一些校外培训机构的课程时,L4级自动驾驶公司AutoX发言人提醒新智驾,如果候选人参与过一些比较复杂的项目,那么类似的校外培训经验有用。

不过如果只是参与了简单的落地项目,这种项目经验反而会导致候选人的技术积累比同龄人更慢更浅,求职过程中会比较困难。

“人才荒”——这不仅仅是自动驾驶一个领域的困境,而是已经成为整个制造业转型的桎梏。

如今,供给侧改革大潮滚滚而下,我们又再一次站在了 历史 的十字路口,除了资本、资源,人力资本也必须开始向新供给集中,新需求才可能被创造,从而挤压老产业的生存空间,从根本上消除产能过剩。

教育政策,也必须回到 社会 需求与 社会 现实中,才会有不断焕新的生命力。

参考资料:

《无人驾驶 汽车 概论》,作者:陈慧岩、熊光明、龚建伟,出版社:北京理工大学

雷峰网#雷峰网#雷峰网

L3级系统今年或量产!5位大咖详解自动驾驶发展趋势

车东西

文 | 六毛

车东西1月10日消息,中国电动汽车百人会论坛(2020)在北京开幕,并于今天上午举行了以自动驾驶全球态势与基础体系为主题的自动驾驶论坛。

而作为今年开场的首个高规格自动驾驶论坛,参与者自然众多。开场20多分钟会场内就已经站满了人,外面的人还想进去,无奈里面的人不愿出来,场面相当火爆!

▲会场入口

中国工程院院士邬贺铨、安波福亚太区总裁杨晓明、博世底盘控制系统中国区高级副总裁蒋京芳、禾多科技创始人兼CEO倪凯、日本汽车工业协会北京代表处首席代表松岛忠信等出席本次论坛并发表了演讲。

中国工程院院士邬贺铨就5G车联网面临的挑战分享了自己的看法,在邬贺铨看来,虽然相对于其他移动通信系统,5G更靠拢车联网的需要,但当前5G车联网在网络通信效率、运营支持、安全问题等方面依然面临挑战。

▲论坛现场

安波福、博世、禾多科技等自动驾驶的产业链玩家也在论坛上做了分享。

安波福亚太区总裁杨晓明认为,目前传统的汽车架构功能已趋向饱和,无法承受目前安全、绿色和互联的行业发展趋势对汽车平台的要求,未来新的智能汽车架构将由功能化控制向域控制、区块控制转变,并最终向软硬件分离的全智能汽车架构发展。

博世底盘控制系统中国区高级副总裁蒋京芳认为L3级以上自动驾驶面临挑战,目前L3级以上的自动驾驶,博世在中国的整个路线目前还是问号。2020年,博世将会在中国推出L2.5级高速公路辅助系统(支持驾驶员脱手的L2)和遥控泊车辅助系统。

禾多科技创始人、CEO倪凯则认为,自动驾驶的市场从过去的ADAS到未来的自动驾驶,正在面临一个分水岭,而且这个分水岭就发生在现在。

除此之外,日本汽车工业协会北京代表处首席代表松岛忠信,也在论坛介绍了日本汽车工业协会在推动驾驶辅助技术和自动驾驶技术发展方面所做的工作,并对包括主动安全刹车、误踩踏板加速抑制装置在日本的普及情况进行了分享。

一、5G车联网:网络通信效率等面临挑战

中国工程院院士邬贺铨就5G车联网面临的挑战,分享了自己的看法。

在邬贺铨看来,虽然相对于其他移动通信系统,5G更靠拢车联网的需要,但实际上车联网的一些特点,并非5G所面对公众通信的特点,5G车联网依然在网络通信效率、运营支持、安全问题等方面面临挑战。

邬贺铨表示,整个5G虽然考虑了车联网,但准确地来说,它首先还是为了公众通信而设计的。

▲中国工程院院士邬贺铨

公众通信和车联网的区别在于城市里面车联网的距离很短,包括前后的车辆也只有约几十米的距离。车联网80%的情况是处于汽车行驶状态,因而对移动性管理较高。

另外车联网基本要求随时在线,同时城市车联网的V2V环境下的通信需求是点到多点和多点到点的需求,这与主要以点到点的传统通信需求不同。

此外,车辆网中每一辆车发送的信息不受车主控制,但面向公众的通信所发送的信息是主叫方主动的,被叫方也是已知的。

邬贺铨认为,目前5G车联网至少在网络通信效率、边缘计算、安全问题、运营支撑等方面存在挑战。

▲自动驾驶论坛会场

网络通信效率方面,传统的互联网通信采用无连接的方式,但对于车联网来说,这种连接方式就显得效率太低了。

其次,移动的车辆以及每一辆车对通信的要求是不一样的,例如特种车辆和一般车辆就可能会有不同的需求,如何处理这些具体的业务要求是一项挑战。

另外,为了适应车联网的需要,缩小时延,需要把云的能力、部分计算能力下沉,通过大量使用边缘计算,把存储内容分发下沉到边缘云来处理。但随之而来的是成本问题,同时边缘计算之间的沟通是通过基站还是通过中心云的方式也是需要考虑的。

安全问题方面,邬贺铨表示,车联网是5G的一种业务,而5G的业务采用了一种开放的方式。之所以开放是为了让现有的业务更灵活,但是由于原来网络是封闭的,协议是专用的,所以很少听说有网络安全事件发生在运营商的网络,现在网络变成了开放的,协议则是通用的,一定意义上会增加更多的安全风险。

然后,运营支撑也很复杂。5G有虚拟NFV、网络切片,而这些都需要复杂的动态管理。换句话说,车联网一个问题要快速计算和处理,运营支撑系统不能只依靠运营商,这样做很难做到实时。而对于5G和车联网来说,实时性都是很大的挑战。

除此之外,能够分配给车联网的频率,以及相关基础设施建设的成本等方面,5G车联网也面临着挑战。

二、安波福:智能汽车架构是高级自动驾驶量产的基础保障

安波福亚太区总裁杨晓明在本次论坛上带来了安波福的新产品智能汽车架构。

而在介绍智能汽车架构概念之前,杨晓明先谈到了他在CES 2020上看到的变化。

杨晓明表示,去年的CES展会上有诸多企业讨论L3、L4、L5,同时有很多企业进行自动驾驶汽车的展示,但在今年的CES展会上,安波福等公司没有再提供自动驾驶道路的演示。

在杨晓明看来,自动驾驶已经走出了需长期进行模拟实验的阶段,因此安波福更关心的是如何帮助下一代自动驾驶落地,帮助行业实现量产。

▲安波福亚太区总裁杨晓明

从行业看,目前,L2或L2+自动驾驶已经在非常快速推行,例如在2019年中国车市寒冬之下,主动安全系统仍然处于非常高速的发展状态。

杨晓明认为,整个汽车行业正面临着向移动平台这样一种未来的出行方式转型,在这个过程汽车行业将推动产生更加安全、绿色、互联的出行解决方案。

但是目前传统汽车架构已接近饱和,不太可能承受目前安全、绿色和互联的发展趋势对汽车平台的要求。对此,智能汽车架构将是未来的一个发展趋势。

▲智能汽车架构发展趋势

目前的汽车平均每辆车有50到100个功能控制单元,将来则会过渡到域控制、区块控制,并最终向软硬件分离的全智能汽车架构发展。

据杨晓明介绍,安波福推出的智能汽车架构(注册商标为SVA),有三大特点:

1、当前汽车架构的软件和硬件是不分开的,安波福智能汽车架构非常强调软硬件的分离。

2、数据输入端、输出端与中央计算分离。

3、中央计算中心充当着服务器的角色。

根据车东西此前的了解,由于车辆在出厂时软硬件属于完全嵌入车内,几乎无法更改,因此采用传统汽车架构生产的车辆大多在后期无法更改功能。

同时,现在的汽车由于内部连接100多个电子控制单元(ECU),车内连接线也比较长,从而导致汽车更容易出现系统故障。

而安波福的SVA智能汽车架构能把车辆所有的计算整合到区域控制器里面,并留出足够的接口,帮助在后期使用过程中对汽车软件进行更新,给汽车添加新的功能。

与此同时,车辆传感器和其他硬件都能接入到这个区域控制器里面,提高车辆安全性。

除此之外,安波福SVA智能汽车架构内的每一个区域控制器都可以直接连接其他的两个区域控制器,形成连续互通的路径,这样做的好处在于能够以更低的成本实现控制系统冗余。

▲安波福SVA智能汽车架构

三、博世:今年量产L2.5和遥控泊车

博世底盘控制系统中国区高级副总裁蒋京芳,分享了她对自动驾驶未来发展趋势的看法,以及博世在中国自动驾驶的商业化进展、在智能网联方面的探索和研究。

蒋京芳在演讲时提到,自动驾驶依旧是未来的发展趋势,在中国也是如燎原之势,现在L2级自动驾驶已经落地,L2+或者L2.5指日可待,L3级及以上的自动驾驶有待商榷,L4/L5级自动驾驶则需要更多的合作。

▲博世底盘控制系统中国区高级副总裁蒋京芳

蒋京芳表示,无论势乘用车、商用车,无人是载人还是载货,自动驾驶应用的场景都可归纳为三大类:

1、下图中蓝色部分,即在高速公路、高架路,也就是结构化道路应用的自动驾驶。

2、下图中绿色部分,即用于共享出行的自动驾驶,这也是出行公司所关注的领域。

3、下图中紫色部分,即低速的、局部的区域,比如泊车场景、园区、场区、机场、港口等场景下的自动驾驶应用。

▲博世底盘控制系统中国区高级副总裁蒋京芳做演讲

博世在这三类场景下都有布局,而关于博世在中国的落地路线,蒋京芳也做了介绍。2020年,博世将推出L2.5级高速公路辅助系统(支持驾驶员脱手的L2)和遥控泊车辅助系统。

但L3级以上的自动驾驶,蒋京芳表示博世在中国的整个路线目前还是问号。

▲博世的高速公路辅助系统技术路线分两阶段

在演讲中,蒋京芳表示单车智能到L3级遇到瓶颈的原因包括了传感器成倍增加,成本提高,同时有更多的安全问题需要考量,依然面临着较大挑战,量产时间还有待商榷。

不过,她也表示,中国推动的ICV、智能网联,是一个非常好的方向,对此博世与华为在无锡示范区也针对不同的场景进行了一些研究,包括依靠V2V的场景、依靠路测单元补充车辆视觉信息以及ACC场景。

而关于包括中国在内,全球自动驾驶都在推迟SOP时间的原因,蒋京芳认为除了感知、定位、决策需要更多的冗余之外,系统的电子电气架构、系统安全、网络安全以及现在的信息安全,特别是如何验证系统也是比较大的挑战,另外相关法规的制定也很重要。蒋京芳认为,这些问题需要整个行业共同努力,一起克服。

四、倪凯:ADAS和自动驾驶的分水岭已至

自动驾驶创企禾多科技创始人、CEO倪凯在论坛上分享了他对于自动驾驶产品、ADAS和自动驾驶的区别以及自动驾驶行业赛道的看法。

倪凯表示,从禾多的角度来看,自动驾驶的产品需要具备三要素:1、应用场景;2、用户体验;3、自动驾驶的等级。

首先,场景非常重要,因为不同场景下对于自动驾驶系统的设计、软硬件,所有的数据要求都是有差异的。

其次,用户去买自动驾驶产品的时候并不会特意关心自动驾驶的级别,对于用户来说,体验更加重要。“我喝酒了,或者不会开车,我也可以享受这样一个自动驾驶的产品,这是用户体验上最重要的地方。”倪凯说道。

▲禾多科技创始人、CEO倪凯

倪凯表示,从自动驾驶的发展现状看,Hands on已经是存量市场,包括博世、安波福等公司已经在做这样的产品,而真正往后面走,Hands free的系统则是蓝海市场,会有更多的探索。

最后,自动驾驶的等级可以大概对应到用户体验。

倪凯认为,自动驾驶的市场从过去的ADAS到未来的自动驾驶,正在面临一个分水岭,而且这个分水岭就发生在现在。

原因在于两者在技术上有很大不同。

首先,L1/L2的ADAS是分布式的ECU设计,而L2.5的系统以及L4/L5的系统是中央处理的系统架构。其次,从软件上看,辅助驾驶的软件系统跟自动驾驶软件系统相比,没有做高精度定位和非常复杂的预测等工作。第三,在传感器方面,ADAS是前向传感器配置为主,自动驾驶系统则是360°融合的配置。最后是在整个控制上,从ADAS到自动驾驶,其实也就是从以纵向控制为主、横向控制为辅向复杂的横向控制转变。

此外,倪凯还认为自动驾驶行业里有两条不同的赛道,一个是量产自动驾驶的系统,第二个是无人出租车。两个赛道在现阶段强调的技术能力、适用场景、传感器上有很大不同,因而在研发上也是在走两条不同的路线。

目前,禾多科技走的是第一条路线,即自动驾驶量产的路线。

而关于整个量产自动驾驶的产业链,倪凯表示OEM、经销商(Dealer)、消费者(Drivers)、Tier1、Tier2甚至还有Tier3共同构成了这个产业链条。

在倪凯看来,针对这样的产业链,现在也可以看到几个小趋势:

1、整个自动驾驶产业链联盟化明显。

2、抱团取暖带来两个结果,也是两个小趋势。一是分工更加细化,一是软硬件的解耦,而软件解耦也意味着可以有更多的定制化。

五、日本今年起量产高速公路L3级自动驾驶

2015年,日本汽车工业协会(JAMA)发表了《自动驾驶愿景》,部署工作推动自动驾驶技术在包括汽车、摩托车、自动车、步行在内的所有交通出行方式中的应用。

而根据日本汽车工业协会北京代表处首席代表松岛忠信公布的数据,在日本,部分已经开始应用的驾驶辅助技术的普及情况如下:

1、截至到2017年底,减轻碰撞伤害的制动装置也就是主动安全刹车,接近80%的新车都已配备,日本政府定制的目标是到2020年为止,新车的90%以上都要装备这种刹车装置。

2、误踩踏板加速抑制装置是在停车场等不应该加速的地方检测到深踩油门时可以自动抑制加速的装置,截至到2017年底普及率达到65.2%。

3、车道偏离预警装置普及率63.5%,车道保持辅助系统普及率22.7%。

▲日本汽车工业协会北京代表处首席代表松岛忠信

关于自动驾驶,松岛忠信表示,高速路上的自动驾驶技术已经即将实现,但在一般道路等很复杂的交通环境时的应用,依然存在不少课题需要解决,在技术开发方面还需要更多的时间。

而关于自动驾驶技术的应用,日本政府计划在2020年左右达到私家车在高速路上实现L3级的自动驾驶,并提出了2020年以后逐渐扩大到一般道路上的目标。日本汽车工业协会目前也在积极地参与这项研究。

结语:自动驾驶量产落地已成关键课题

各产业链玩家在自动驾驶论坛上的分享传递出几个比较明确的信号,一是自动驾驶适用场景得到更多强调,不管是在测试阶段还是在应用阶段,二是方案提供商注重用户体验,三是在经过前几年的飞速扩张之后,自动驾驶技术正在逐渐下沉。

虽然L3级以上自动驾驶依然面临技术、法规、安全等诸多挑战,但越来越多的公司开始朝着量产自动驾驶的方向努力。

而在今年的CES展会上,还有一批“低价”激光雷达亮相,或许我们见到无人出租车等高级自动驾驶真正实现商业化运营的一天,会比想像中来的更早。

本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

造车新势力蔚小理的自动驾驶进化之路

英伟达CEO黄仁勋曾提出“电动化”与“智能化”将对 汽车 产业带来颠覆性的变化,如今“电动化”的战场硝烟未止,“智能化”的战争便已经打响。

自动驾驶作为智能 汽车 的大脑,是实现“智能化”至为重要的一环,是 汽车 进化为智能体的必由之路,可以认为, 得自动驾驶者得“天下”。

在各路自动驾驶玩家中,国内的造车新势力是一股不容小觑的力量,目前以小鹏、蔚来、理想三家处于相对领先地位。

蔚小理均采用渐进式的路线,即从低等级的自动驾驶起步,逐步扩展功能和场景覆盖,最终进化为全场景的完全自动驾驶。

不过,蔚小理对于实现自动驾驶进化的思路以及速度存在差异,从整体上看,小鹏目前领先于其他两家,蔚来略领先于理想, 本文将尝试对这三家企业的自动驾驶进化之路进行解读。

01 小鹏

快速迭代保持领跑,重点深耕泊车场景

小鹏从创始之初就一直致力于做中国的自动驾驶第一,小鹏 汽车 董事长何小鹏在中国电动 汽车 百人会论坛上自豪地说道,小鹏在智能驾驶领域比绝大多数公司领先2-3年。

2018年12月 小鹏首次推出辅助驾驶系统Xpilot2.0 ,搭载于小鹏首款智能 汽车 G3,计算平台采用Mobileye EyeQ4芯片,感知硬件系统包含1个前视摄像头、4个环视摄像头、3个毫米波雷达和12个超声波雷达。

在当时,小鹏经过调研认为在自动驾驶最主要的三大系统行车、泊车与主动安全中,泊车系统的功能成熟度相对是比较低的。

自动驾驶产品开发部总监肖志光提出:“我们看到了其中很多用户痛点,之前的泊车系统经常识别不到车位,且操作不便捷,那这些地方我们可以去攻关,真正解决用户的痛点。”

因此,除了落地基础的ADAS功能外, 小鹏选定智能泊车作为其自动驾驶进化之路的“制胜法宝”。

小鹏是国内最早 将视觉感知能力融入自动泊车 的车企,车辆可以通过摄像头识别周围的车位线等,与雷达系统的感知能力进行融合完成泊车,这使得小鹏可以实现垂直、水平、斜方位、无划线等所有泊车场景下的自动泊车和遥控泊车能力。

这项能力到目前仍然是领先于蔚来和理想的。

然而由于Mobileye比较封闭的特性,最重要的感知算法基本为“黑盒”,导致车企对于算法的开发自由度很低,也很难触及到用户使用过程中产生的数据,对于小鹏这种很早就计划要做全栈自研的车企,显然是无法满足其诉求的。

因此小鹏 决定改用英伟达的Xavier芯片作为计算平台 ,Xavier是英伟达2020年量产的首款高等级自动驾驶芯片,算力30Tops,远高于EyeQ4的2.5Tops,最关键的是英伟达的芯片是开放式的,车企在其提供的开发环境内较高的自主开发性并可以获得底层的感知数据。

摆脱了“黑盒”的束缚 ,小鹏开始施展拳脚,正式开启“全栈自研”之路。(注:这里说的“全栈自研”是指以此为方向,并不代表已完全落地,事实上,目前能做到全栈自研的公司只有特斯拉,国内车企可以实现部分自研)

2021年1月小鹏推出P7车型,搭载Xavier芯片,并新增3个前视摄像头、4个侧视摄像头、1个后视摄像头, 构建了360度全方位环绕感知能力 ,而蔚来和理想事实上直到今年才完成此项能力构建。

小鹏在P7车型中配备升级后的自动驾驶辅助系统Xpilot3.0,支持NGP高速领航辅助驾驶功能,即在高速场景下可以实现高精地图覆盖范围内的点到点自动驾驶, 由此小鹏已实现“泊车+高速”双场景覆盖 。

同年6月小鹏对其主打的自动泊车能力进行了大幅提升, 通过OTA推送了“VPA记忆泊车”功能 ,被官方称为是“首个量产且不依赖于停车场改造的最后一公里泊车功能”。

所谓VPA记忆泊车,是指系统可以自动记忆车主常用的停车路线,在不需要驾驶员干预的情况下,将车辆从设定路线的起点自动开往设定路线的终点, 是L3级自动驾驶功能 。

小鹏的VPA以视觉感知输入为主,通过视觉神经网络处理算法构建停车场的“语义地图”,包含停车场内的车道线、柱子等各种核心元素,将实时感知到的元素与记忆中的元素进行“匹配”,进而不断调整行车路线以接近记忆路线,直至完成泊入车位。

在拥有泊车和高速两大场景的高阶自动驾驶能力后, 小鹏继续发力城区场景 ,引入激光雷达传感器,与摄像头视觉感知融合,打造更具安全冗余的感知能力,释放城区场景NGP辅助驾驶能力,落地于小鹏P5车型。

至此, 小鹏自动驾驶能力已初步覆盖泊车、高速、城区三大核心场景。

小鹏的快速迭代之路仍在继续,今年2月,小鹏通过OTA进一步升级记忆泊车功能,新增跨楼层记忆泊车、记忆路线可分享、泊车过程中可沿途搜寻并泊入空闲车位等能力。

小鹏也因此 基本实现了“自动泊车”向“自主泊车”的进化。

为了更进一步打通各场景下的自动驾驶能力,小鹏将再次升级计算平台, 将Xavier芯片替换为英伟达最新的OrinX芯片 ,单颗芯片算力达到254TOPS,打造出Xpilot4.0, 实现真正意义上的全场景、点到点的导航自动驾驶 ,首次搭载最新软硬件系统的是小鹏最新款车型G9,将于今年6月正式发布。

整体来看,小鹏以智能泊车作为持续深耕的功能,这个选择是有效的,一方面国内泊车费时费力,是用户开车的痛点问题之一,另一方面停车场属于超低速场景,在自动驾驶能力还不够完善时相对风险较低, 小鹏在泊车域成功实现卡位 。

同时, 小鹏从一开始便提出要逐步全栈自研的思路,并以高频次快速迭代,是最早实现高速、泊车、城区全场景自动驾驶能力覆盖的车企。

小鹏的自动驾驶能力在国产造车新势力中目前是处于领先身位的,随着蔚来、理想的奋力追赶,如何持续保持领先优势是小鹏需要研究的课题。

02 蔚来

硬件能力高举高打,率先落地高速领航

蔚来是国产造车新势力的先行者 ,2017年12月便首次发布了 第一代自动驾驶系统NIO Pilot ,搭载于蔚来首款车型ES8,包括后来的ES6和EC6均使用这套辅助驾驶系统。

NIO Pilot的计算平台同样选用的Mobileye的Eye Q4,初代感知系统采用3个前视摄像头、4个环视摄像头、5个毫米波雷达及12个超声波雷达在内共计22个传感器组成,这个配置是要高于小鹏和理想的初代感知硬件。

2019年6月蔚来通过OTA推送了 NIO Pilot的第一次重大升级 ,新增了包含高速自动辅助驾驶、拥堵自动辅助驾驶、转向灯控制变道、道路交通标识识别、车道保持功能、前侧来车预警和自动泊车辅助系统在内的7项功能。

需要注意的是,这次升级的几项功能仍是L2级以下的低阶自动驾驶水平,包括其中的高速自动辅助驾驶,仅是在实现自适应巡航(ACC)的车速控制和车距保持功能的基础上,增加了车道保持的转向辅助功能。

蔚来真正实现较高水平的自动驾驶能力,是在2020年10月融入高精地图后, 释放的高速场景下点对点领航辅助驾驶功能 ,这个时间点要早于小鹏和理想,是 国内首家实现NOA高速领航落地的公司 。

对于蔚来自动驾驶能力的进化之路而言,这是一个重要的节点, 标志着蔚来开始迈向L3时代 ,与小鹏选择泊车场景作为切入点不同,蔚来率先选择切入的场景是高速。

随后蔚来 升级视觉融合全自动泊车功能 ,不过仅支持水平和垂直两类常见车位自动停靠,对于斜方位或者无划线的车位无能为力,属于L2级别,整体性能距离小鹏有较大差距。

第二代自动驾驶平台NT2.0的问世,是蔚来另一个重要节点。

2021年1月,在蔚来NIO DAY上,李斌发布了NT2.0以及基于此平台打造的 NAD自动驾驶系统 ,NAD的全称是NIO Autonomous Driving,从Assisted Driving(辅助驾驶)到Autonomus Driving(自动驾驶),表明了李斌对这套系统的定位。

李斌曾提到,以NT1.0搭载的硬件架构,其传感器和运算能力无法实现 L4 级自动驾驶,也不会宣布可以做到L3,他认为NT2.0作为蔚来研发的新一代技术平台,会是行业内最先进的量产自动驾驶技术。

NT2.0和NAD的落地标志着蔚来吹响加速向无人驾驶进军的冲锋号角 ,配备此系统的最新款车型ET7已于今年3月落地交付。

NAD系统在硬件层面延续了蔚来“高举高打”的特点 ,计算平台由Mobileye升级为更为开放的英伟达,共计搭载4颗英伟达Orin芯片,包括两颗主芯片、一颗备份芯片和一颗群体智能与个性训练专用芯片,整体构成蔚来超算平台NIO Adam,算力高达1016TOPS。

在感知层面, 蔚来打造Aquila超感系统 ,NAD在NIO Pilot基础上拿掉一个前视摄像头,但新增两个瞭望塔式侧前视、两个侧后视和一个后视,并且摄像头由180万像素升级为800万高清摄像头,构建360度全视角高清感知能力,同时新增一个激光雷达,作为视觉感知的冗余,整体称得上豪华。

同时值得注意的是, 蔚来在NAD中还额外增加了C-V2X感知模块 ,是国内第一个在新车搭载V2X的车企,V2X即车联网,用以实现人、车、路和云平台之间的连接与通讯,表明蔚来在发力单车智能同时,已经开始布局车路协同。

可以看到, 蔚来实现自动驾驶进化的一贯思路就是“硬件先行” ,无论是NT1.0,还是NT2.0,都配备了高冗余的硬件系统,基于高规格硬件系统,通过正向独立开发不断更新软件能力。

不过,高级别硬件能力固然可以更好地保障自动驾驶系统游刃有余地处理各类复杂任务,然而单靠硬件堆栈难以从根本上真正提升自动驾驶的能力, 再好的“装备”如果不是给到一个“技能”足够强大的角色,可能也难以“打赢 游戏 ” 。

NAD相比NIO Pilot不仅需要完成从高速到泊车、城市的全场景跨越,还需要完成从仅前视感知到360度环绕+激光雷达融合感知的跨越,且由于前期一直采用Mobileye封闭芯片,底层的数据积累不够充分,这些对于蔚来都是需要面对的挑战。

如何提升算力和数据的利用效率, 强化自动驾驶的“软实力” ,是蔚来需要加足马力提升的,好在蔚来具有厚实的研发基础,近日原小鹏自动驾驶产品总监黄鑫的加入,或许可以一窥蔚来要做出改变的决心。

03 理想

后起之秀先发制人,自研发力主动安全

相比小鹏和蔚来,理想的自动驾驶之路看起来是起步更晚的,李想曾自嘲说道是由于自己创业初期融资能力差导致没有充足的资金开展智能驾驶技术研究,这个局面在2020年理想 汽车 IPO之后才发生根本性转折。

但或许,理想的自动驾驶之路早就开始了。

2019年4月理想落地首款量产车理想One,同样是搭载拥有成熟ADAS方案的Mobileye EyeQ4芯片,配备1个前视摄像头、4个环视摄像头、1个毫米波雷达和12个超声波雷达,具有车速、车道控制等L2级以下自动驾驶功能,整体比较基础。

但理想有一个特点, 从一开始就标配辅助驾驶功能 ,是因为理想希望通过用户使用持续收集驾驶场景的数据,理想拥有乙级地图测绘资质,是造车新势力中第一家拥有合法收集数据资格的企业。

也就是说, 理想ONE一直在使用“影子模式”获取数据 。

数据对自动驾驶至关重要,自动驾驶底层是一种基于机器学习算法的技术,数据是算法建模与软件落地的基础,大量的数据采集是自动驾驶技术开发的前提。

可以说理想从采集数据开始就已经启动了自动驾驶之路,因此我对理想自动驾驶的定位是“后起之秀,先发制人”。

在拥有充分的数据和研发资金后,理想便抛弃了相对封闭的Mobileye芯片, 转向与支持车企自主开发感知、控制算法的地平线J3合作 ,开启自研之路。

2021款理想ONE便是落地的车型,相比2020款,升级了前视摄像头的性能参数,新增4个毫米波雷达,并首次融入高精地图。

自研方向除了必备的NOA导航辅助驾驶之外,理想还 选定了AEB作为自研的重点功能 ,AEB全称Autonomous Emergency Braking,即自动紧急制动系统, 是一种 汽车 “主动安全”技术 。

在传统 汽车 领域,AEB已经是一个较为成熟的功能,主要依靠雷达进行障碍物识别,通过测量距离碰撞发生的时间来判断是否选择自动制动,由于 汽车 在行驶过程中突然刹车也是有危险的,因此AEB要求性能非常稳定,既不能不刹车,也不能乱刹车。

那为什么理想要选择这样一个在自动驾驶系统里并不起眼且开发难度极高的功能作为自研突破点呢?

不考虑商业竞争的因素,或许源于李想对产品力的极致追求,安全性是衡量自动驾驶能力一个很重要的性能指标,AEB虽不起眼,但却是ADAS里 唯一一个在行车场景下随时待命的功能 ,对于自动驾驶的安全性能有非常重要的意义。

传统的AEB方案由于仅依靠毫米波雷达做探测,缺乏对物体的识别,容易出现误报的情况, 理想在自研过程中将视觉能力融合进来,采用“视觉+毫米波雷达”融合感知的AEB方案, 并利用积累的巨量真实驾驶数据进行算法训练,实现AEB功能的快速迭代和落地。

理想是全球第二个落地视觉融合方案AEB的车企,第一个是特斯拉。

2021年12月,理想正式交付自研完整版的AEB和覆盖高速场景的NOA功能,也 标志着理想在自动驾驶方向与小鹏和蔚来正式站在同一个赛道 。

进化之路仍在继续,2022年3月,理想发布新一款车型理想L9,硬件能力全面升级,感知层面采用高性能摄像头作为主要感知来源,配备6颗800万像素和5颗200万像素摄像头,实现360度全方位感知,同时配备激光雷达作为感知冗余,计算平台也同样采用算力更强大的英伟达Orin方案,搭载两颗OrinX芯片,总算力达到508Tops。

同时 理想推出自动驾驶系统AD Max ,采用全栈自研的感知、决策、规划和控制软件,基于这一代系统,理想将逐步覆盖高速、泊车、城区的全场景导航自动驾驶能力。

理想作为后来者,以主动安全为主要发力点切入自动驾驶初见成效 ,不过AEB毕竟是个低频功能,而且用户其实并不希望有需要用到AEB的场景,自动驾驶要想真正给用户体验带来“质”的变化,在行车域和泊车域的功能是重头戏,理想需要加速这些方面的能力落地。

面对实力强劲的竞争对手,理想仍然道阻且长。

04 有什么共性?

三家新势力在各自制定的路线上实现自动驾驶的快速进化,虽然路线有所差异,但大的方向还是存在一些共性:

数据驱动的底层思想

数据对自动驾驶的重要性不言而喻, 算法为数据服务,算力为算法服务 ,数据是自动驾驶能力的“源泉”。

小鹏 汽车 董事长何小鹏说:“我们致力于全栈自研,坚持数据驱动并不断创新,这是小鹏 汽车 业务的基石。”

理想 汽车 CTO王凯说:“车企想做到头部,一定要做数据驱动的 科技 企业。”

蔚来联合创始人秦力洪说:“原生数字化企业不是个时髦,是个必须。”

从这些变态可以看出三家企业均 将“数据驱动”作为打造自动驾驶和智能 汽车 的一个基本底层思想 。

数据驱动的关键是要构建数据闭环,包括数据采集、数据标注、数据训练、数据仿真等模块在内,共同形成由数据驱动开发和功能迭代的闭环系统,小鹏、蔚来和理想均在此发力。

未来自动驾驶的产品竞争,高效的数据闭环将成为有力的武器。

冗余配置的工程思维

人体作为一个复杂系统,冗余配置是很常见的一种形态,例如双肺和双肾,其中一个坏掉后不影响人体的正常运转。

冗余配置,是指重复配置系统的某些部件,当系统发生故障时,冗余部件介入并承担故障部件的工作,由此减少系统的故障时间。

对于自动驾驶的工程落地,蔚小理也运用了冗余配置的工程思维,在相关链路中的感知、计算、执行系统等环节都做了充分的冗余配置。

感知层面,小鹏、蔚来和理想均同时搭载摄像头、毫米波雷达、超声波雷达等多类型传感器,并将同时配备激光雷达,不同传感器的能力各有优势且有重叠部分,构造出“具有冗余感知能力”的自动驾驶感知系统。

算力层面,蔚来配备四颗芯片,一颗作为冗余备份,小鹏和理想配备双芯片互为冗余,三家的自动驾驶算力均达到500Tops以上,蔚来更是达到1000Tops+,强大的算力应用于目前的自动驾驶能力有充分的冗余空间。

执行层面,针对转向控制系统、驻车制动系统、动力输出系统蔚小理也都做了相应的冗余设计,确保自动驾驶控制信号正常执行。

安全是自动驾驶第一要义,冗余为安全护航。

应用场景层面的渐进式

实现全无人驾驶的路线有渐进式和跨越式两种,一般意义上的渐进式是指自动驾驶能力上从L1-L5逐步实现。

还有一种视角是在应用场景层面的渐进,也就是说,先在部分场景落地相对高阶的自动驾驶,然后不断扩大应用场景,最终实现全场景的高阶自动驾驶。

小鹏优先在泊车场景落地L3级的记忆泊车,随后在高速和城市快速路场景落地L3级点到点导航辅助驾驶,主城区场景点到点导航辅助驾驶正在测试中,预计今年中旬会正式落地。

蔚来和理想目前已落地高速场景导航自动驾驶,并且都宣布会在最新一代自动驾驶系统中逐步落地全场景导航辅助驾驶功能。

从泊车、高速、城市快速路、主城区,到更广泛的场景实现多域融通, 自动驾驶将逐步渗透,量变终会引发质变 。

软硬件全栈自研的趋势

从Mobileye到英伟达,车企选择合作的芯片由封闭走向开放,核心原因是车企希望在数据和算法层面掌握更多自主权,随着硬件能力逐渐趋同,智能化的竞争最终是软件及软硬耦合能力的竞争, 车企掌握数据和算法的自主权,更有利于实现快速迭代,打造差异化功能体验和产品服务 。

目前蔚来、小鹏和理想均已先后启动软件和算法的全栈自研之路,同时对于自动驾驶核心硬件的自研也正摩拳擦掌。

早在2020年,蔚来便传出要自主研发自动驾驶计算芯片的消息,后来因为遭遇财务危机,芯片自研的计划暂时被搁置,2021年据36氪报道,小鹏 汽车 也已开始涉足核心芯片的自研,而理想因为近期才宣布软件自研,硬件自研还需时日,理想对外的说法中也没有否认过要自研芯片的可能性。

要最大限度发挥自研技术的价值, 软硬件一体化自研或许是必由之路 ,国外的特斯拉便是这方面的先驱。

05 写在最后

自动驾驶的赛道日渐拥挤,越来越多的玩家意识到自动驾驶 的重要性,蔚小理由于介入更早,在认知、技术、数据、经验等多个维度都已具备一定的领先优势和技术壁垒。

从全球来看,造车新势力的自动驾驶能力,国外特斯拉一枝独秀,处于霸主地位,国内以蔚小理处于第一梯队,能力各具千秋,逐步形成阶段性的“一超多强”竞争格局。

然而,自动驾驶的竞争并不会停止,在蔚小理相互之间持续竞争之外,随着后续苹果、小米、集度等新玩家的加入,以及传统车企对自动驾驶能力的追赶,竞争会愈演愈烈。

竞争会加速进化,在以蔚小理为代表的造车新势力的推进下,期待 全自动驾驶时代可以提前到来。

来源于公众号:禾隐记(hejunnote)

专访「算法之父」Michael Saunders:人工智能未来的突破点可能在自动驾驶

AI 科技 评论按 ,4 月 25 日,在由涂鸦智能联合知名 财经 媒体《新财富》、人工智能领域知名媒体《全球智能化商业》共同举办的「全球智能化商业峰会」上,斯坦福大学荣誉教授、新西兰皇家学会荣誉成员、世界级算法专家 Michael Saunders 进行了以「基於约束优化的算法:通用软件的益处」为主题的演讲。

Michael Saunders 曾任斯坦福大学管理科学与工程系教授。目前,他是斯坦福大学荣誉教授、数学家、世界级算法专家,工业与应用数学学会会士,新西兰皇家学会荣誉成员,斯坦福大学发明名人堂成员。

Michael Saunders 教授师从科学计算之父 Gene Golub,于 1972 年获得了斯坦福大学计算机科学博士学位,作为计算机领域的「大咖」,他曾获数学程式设计学会「William Orchard-Hays 奖」及工业与应用数学学会「暹罗线性代数奖」。据了解,目前其用于矩阵方程式和优化问题的数学算法在全球被广泛使用。Michael Saunders 教授曾为通用电气、波音公司等提供咨询服务。

Michael Saunders 教授的研究领域包括人工智能、大规模科学计算、大数据分析、系统优化、稀疏矩阵解法、软件工程、AIoT 等。

在他看来,互联互通一直都是 AIoT 产业的优化难题,例如此次会议的主办方涂鸦智能也推出了类似技术希望解决信息孤岛的问题,Saunders 教授在此领域贡献突出。

以下是此次 Michael Saunders 教授的演讲和专访纪要,AI 科技 评论做了不改变原意的整理:

大家好!谢谢今天来现场的各位嘉宾,我很高兴来到中国。不好意思,我是新西兰人,我会说一点法语,一点西班牙语和一点英语,但是中文要难得多。

今天我想要和大家讲的是「约束优化」,在这之前,我想先谈一下为什么我会去斯坦福大学并参与计算机相关的科研,并谈谈关于约束优化的 历史 。

从新西兰到斯坦福,专注于「约束优化」

1972 年,我取得了在斯坦福大学的博士学位,我返回新西兰并以为我会就此永远待在新西兰,但斯坦福大学教授 George Dantzig,线性代数之父,他开始了系统优化实验室(SOL)计划,并且邀请我回到斯坦福。

在我参与系统优化实验室之时,Dantzig 教授负责建立经济和能量模型,而我则专注于非线性目标函数,并且研发 MINOS 优化软件的初始版本,以解决这些模型的问题。

当时,斯坦福大学教授 George Dantzig 提出了一种新的算法优化——即「约束优化」。这是一个很难的研究课题,它是在一系列约束条件下,寻找一组参数值,使某个或某一组函数的目标值达到最优。「约束优化」本质上是一个线性代数问题,通过软件来实现优化分析。

到了 1980 年代,我又延伸了 MINOS 用以处理一些非线性约束条件,并且我们开发了其他的约束优化软件用于通用电气和 NASA。

在 1990 年,我们的软件被用于温室效应模型,以及航太的优化问题,例如飞机和太空船的轨道优化。

我有一个做航空器的双胞胎兄弟大卫,他从 1975 年起,就在 NASA 的艾姆斯研究中心(Ames Research Center)工作,他利用了我们的优化软件设计超音速飞机、新型的太空梭和太空舱,虽然当中有些项目后来被取消了。

当然,我们的算法优化也用在了其它很多领域。比如,控制机器人的运行轨迹;还有医疗领域,我们可以瞄准 X 光光束,帮助医生进行放射治疗。

优化对航空应用至关重要

我们的软件被用于很多 NASA 很多航空项目,比如:

以上问题都离不开优化。

在 2010 年,我参与设计了有阿波罗 2.0 之称的宇宙飞船猎户座(Orion),猎户座和阿波罗的外形相似,但体型大得多。大卫优化了猎户座的防热罩的曲度,他发现 50 年前,阿波罗的设计师选择的外形就是一个最优化的形状。

最近,我们的优化还被用于世界上最大的飞机」Stratolaunch」, 它于 2019 年 4 月 13 日在加利福尼亚州完成首飞。Stratolanuch 配备有两个机身,和六个波音 747 引擎,它的机翼展开比一个足球场的长度还长,它可以载着一个火箭或者是小型的太空船到 11000 米的高空,并且将其发射到轨道上。大卫改善过后的优化结果显示,Stratolaunch 如果在 2500 公里的距离就开始降落程序,那会有点过早。

优化软件和应用相辅相成

算法优化帮助我们做了很多解决方案。

在 20 年前,我们使用 PDCO 软件来做信号分析(基追踪降噪,BPDN),我们现在使用同样的软件做不同的应用:分析低频核磁共振信号,用以分析某些东西的组成,例如橄榄油或者是生物柴油,我们既有的软件找到了新的应用方式。

有时,新的应用会引领我们创造新的算法。例如系统生物学里头的多维度模型问题没办法以现有的软件解决,我们就使用了双精度型和三重精度型版本的优化 MINOS 软件,开发了 DQQ 程序。

我们还开发了 NCL 算法来解决税法模型,此前,这是无法通过既有的软件去解决的。NCL 解决了一系列很大但容易解决的优化问题。令人意外地,我们发现如何通过内部方法促进优化,来」热启动」(warm start)每一个大难题。热启动通常是无法通过内部方法实现的。因此,全新的高难度应用促使我们催生了新的通用软件,这是个非常有趣的过程。

总结一下我的演讲主题,当我们设计一个优化软件时,我们总是希望打造一个「万用型」的软件,让其能够物尽其用。但老实说,我们永远不知道,是什么样的人在使用我们的软件,有时候,软件会帮助科学家发现针对新兴应用的优化解决方案,这带给我们立即的成就感。但有时候则正好相反,是新兴的应用迫使我们用新的方式结合既有的软件去设计新的算法。

在未来,我们会看到很多像自动驾驶车这样的应用,而自动驾驶安全的重要性和太空船的发射及降落不相上下。优化系统在未来的医疗领域也将大放异彩,它可以使精准医疗成真,它已经让放射疗法变得更精准快速了。

在演讲之后,AI 科技 评论对 Michael Saunders 教授做了一次专访。

AI 科技 评论:今天很高兴有这个机会来采访您!第一个问题,您能不能谈一谈您自己是如何结合研究与业界的应用,您参与过哪些具体的案例?

Michael Saunders: 我的应用案例在我的演讲中提了很多,其中有一些很重要的案例,比如在药物治疗、制造、航空航天、系统生物学和核磁共振等方面。就像我之前说的,我们不知道有谁会用我们的软件,但通用型的软件本来就会鼓励更多的新兴应用诞生。我最喜欢的事情就是别人敲我的门说,「教授,我有个优化问题,请问你可以帮忙吗?。」我希望大家敲我的门。

AI 科技 评论:您是如何看待人工智能、IoT 与系统优化之间的关系?

Michael Saunders: 人工智能涵盖了许多层面,包括数学和计算机科学,求解具有大规模变量方程的极小值问题通常是优化领域的代表性案例。

经典的 SVM 方法解决的是更为复杂的问题,我们已经证明了我们的 PDCO 解决方案是一个比现有的方法更能规模化应用的解方。

物联网包括了感测器,我们用优化方法研究了无线感测器网络(Wireless Sensor Network),用以侦测感测器在哪里。每个感测器都能自主侦测它和其他临近感测器的距离,举例来说,我们可以从一个直升机上面把感测器丢入森林中,让其自动感测是否有森林大火发生,其中只有寥寥数个感测器需要知道具体位置。

AI 科技 评论:千百个 Sensor 之间的互联是吗?

Michael Saunders: 我的 PhD 学生 Holly Jin,在她的博士论文中,她可以精准地定位数千个感测器,这对于大型的森林来说很重要。同样地,如果消防员或矿工佩戴感测器在身上,同样的优化方法也可以用于森林大火或倒塌的矿坑中搜索他们的位置。

AI 科技 评论:现在人工智能技术在中国特别火热,作为这方面的专家,您觉得人工智能技术未来突破点在哪里,这一技术的走向如何?

Michael Saunders: 这是一个很好的问题,人工智能技术已经发展很久了,1967 年,当我还在斯坦福大学念 PhD 的时候,人工智能就已经是一个计算机科学的研究主题了,如果 AI 是泡沫的话,泡沫早就破掉了。

自动驾驶车对于未来的人工智能研究领域来说,是一个很大的挑战,特斯拉创始人马斯克期待特斯拉自动车在今年底就可以自己在路上跑,并且车子还可以在行程之余去接送其他乘客为车主赚钱。我们不清楚这个愿景是否能实现,特斯拉声称他们有一个芯片的运算速度是其他芯片的二十一倍,这是一个很了不起的进展,这让我们离未来的 AI 又更近了一步。

AI 科技 评论:主要是芯片优化?

Michael Saunders: 刚才我们问题就是说,未来的 AI 应用方向,一个是自动驾驶,这是一个非常大的方向,会彻底改变我们的生活方式。我看好自动驾驶的未来。

观众提问:现在机器学习有两种方式,一个是监督式的,一个是非监督式的,您认为哪一种比较有发展潜力?

Michael Saunders: 机器学习的方式有三种:监督学习,非监督学习和强化学习。我认为监督式学习和非监督式学习都是很重要的,研究者们永远都在试着改善它们所使用的方法,我认为在未来,这两种形态的学习方式都会持续进化。

点击阅读原文,查看 Python 技术交流讨论小组

人工智能在自动驾驶的应用背景是什么

技术的快速发展。

根据搜狐网资料显示,随着技术的快速发展云计算、大数据、人工智能一些新名词进入大众的视野,人工智能在自动驾驶的应用得到密切关注。

人工智能(ArtificialIntelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

自动驾驶课题研究背景的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于自动驾驶技术论文参考文献、自动驾驶课题研究背景的信息别忘了在本站进行查找喔。

扫码二维码